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Introduction

Due to the high cost and social objection to animal testing,
and the large numbers of candidate chemicals for screen-
ing, it is important to predict the potential risk of chemicals
with little or no empirical data. The ability to predict toxic-
ity both quickly and accurately comes from an understand-
ing of currently known knowledge. However, there exists a
gap between the application to toxicity prediction and the
mining of available databases, although there is a great
wealth of information unexplored in the databases of toxic
chemicals..

Current efforts for toxicity prediction mainly fall into
the two categories [1-2]. One is knowledge-based systems
that rely on a set of rules distilled from available knowledge
or human experts, whose representative predictive systems
are like DEREK [3-4], OncoLogic [5], etc. The other is cor-

relative model approaches that rely on the use of statistics
for exploring the relationship between structure and activ-
ity, which primarily include the technology of QSARs (Quan-
titative Structure-Activity Relationships) and are adopted
by such programs as TOPKAT [6].  Knowledge-based sys-
tems are restricted to human experts and incapable of dis-
covering new relationships automatically, while classic cor-
relative QSARs are limited to within congeneric series of
chemicals. Therefore, some new schemes should be pro-
posed to explore the databases of noncongeneric chemicals
effectively.

We attempt to adopt a two-step strategy to examine the
chemicals in a database. The first step involves the screen-
ing of chemical categories, here referred to structural pat-
terns shared by a series of molecules that possibly act in a
toxicologically similar manner. This step is a coarse-grained
and qualitative one, and an efficient method is introduced.
The second step is the generation of a detailed relationship
between structure and activity based on chemical clusters,
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which is a fine-grained and quantitative step. The scheme is
a compromise between speed and accuracy.

In this paper, a molecular structure pattern is defined as a
template comprising a given framework and some given
groups; it represents a cluster of molecules sharing common
structural features possibly required for a certain kind of prop-
erty or activity. The notion of structure patterns of toxic chemi-
cals arises from the specificity of action modes of chemicals
in biological systems. In 1909, Paul Ehrlich demonstrated
that drugs often induce physiological effects by binding to
the highly specific target structures (receptors) at the cellular
level. Now, the receptor theory and the concept of specificity
have been universally accepted and profoundly enriched.

There is wide consensus that the shape and the chemical com-
position of a drug must complement those of the binding site
on its receptor (here referring to critical macromolecules in
the body such as proteins, DNA, etc.) [7-13]. For toxic chemi-
cals, the biochemical basis is the same as that of drugs. There-
fore, due to the specificity of action modes, toxic chemicals
for certain kinds of activity will share common structural fea-
tures.

QSAR refers to statistical analysis of potential relation-
ships between chemical structure and biological activity,
which provides a major form to summarise chemical and bio-
logical information so that we can generate and test hypoth-
eses to facilitate an understanding of mechanism of molecu-
lar action [14-16]. Compared to classical two-dimensional
(2D) QSAR, three-dimensional (3D) QSAR offers a more
powerful tool to describe specific interaction between mol-
ecules. CoMFA [17-18] (Comparative Molecular Field Analy-
sis) is one of the most widely used in 3D QSAR. Its basic
idea is that the interactions between a series of chemicals
and the target molecule in biological systems are usually non-
covalent so that the differences of the steric and electrostatic
field surrounding the series of chemicals might provide con-
ditional requirements of molecular structure responsible for
activity. Therefore, CoMFA can be introduced into the QSAR
analysis of toxic chemicals after we identify structure pat-
terns.

Data and methodology

The Registry of Toxic Effects of Chemical Substances
(RTECS) [19] is a database of toxicological information com-
piled, maintained, and updated by the National Institute for
Occupational Safety and Health (NIOSH). It contains infor-
mation on over 130,000 chemicals. From RTECS we con-

Table 1 LD50 value range of toxic chemicals in the data-
base RTECS [a]

LD50 value-range Number of chemicals

≥104  mg·kg-1 254
103-104  mg·kg-1 6,145
100-1,000 mg·kg-1 23,188
10-100 mg·kg-1 12,141
1-10 mg·kg-1 4,453
100-1,000 ìg·kg-1 558
10-100 ìg·kg-1 137
<10 ìg·kg-1 20
Total 46,896

[a] The statistic chemicals are the ones containing both WLN
and LD50 in the database RTECS, totally 47,153 chemicals,
but of them whose LD50 is labelled as mg·kg-1 or ìg·kg-1 are
totally 46,896 as the above.
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Scheme 1 Molecules that are used in an example of similar-
ity computation
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struct a database in the following way: first select the chemi-
cals containing both LD50 value and WLN structure repre-
sentation [20] because of the need of structure information,
totally 47,153 chemicals; then remove the chemicals con-
taining metal atoms such as Se, Te, Bi, As, Sn, Zn, Pb, Au,
Ag, Pa, W, Ni, and so on, because we only concern about
organic chemicals; finally retain 46,544 chemicals to make
up the database of toxic chemicals as the one that we will
study. Here the toxicity of chemicals means that chemicals
have LD50 values recorded. Table 1 displays LD50 value
range of toxic chemicals in the database RTECS.

We attempt to analyse structure patterns of toxic chemi-
cals in terms of structure similarity. We assume that every
chemical in the database belongs to one of molecular struc-
ture patterns, then toxic chemicals for some kind of activity
should be structurally similar in structure patterns so that we
can screen such patterns.

We compute molecular structure similarity as follows: 1)
two molecules cannot be compared until their frameworks
are alike. The frameworks of two molecules are similar if
they share the same framework indicators such as molecular
monocycle count (classified into three-member cycle, five-
member cycle, six-member cycle and others; saturation and
non-saturation); fused-cycle count (classified into dicycle, tri-
cycle, quad-cycle and others; saturation and non-saturation);
branch-point atom count (classified into N-atom class, P-atom
class and C-atom class) and so on.  If the two molecules are
not alike in the framework, the structure similarity value is
regarded as zero. 2) structure similarity values, like the
Tanimoto coefficient, are obtained by comparing group com-
position of the two molecules after comparing the frameworks.
The group composition of the two molecules composes the
group sets respectively (S1 and S2), and the structure similar-
ity value equals to the sum of the cross set divided by the
sum of the combine set, that is, Value = (S1·S2)/(S1+S2).  The

Table 2 The groups used in similarity computation

No. Groups No. Groups No. Groups

1. H-(C=O)-NH- 34. -SH 67. -Br
2. -NH-(C=O)-NH2 35. -S-CH- 68. -CI
3. -NH-(C=O)-O- 36. -SO2- 69. -I
4. -NH-(C=O)-CH2- 37. -SO-CH3 70. -P-
5. -NH-(C=O)-H 38. -S- 71. -N-(phenyl)2
6. -(C=O)-NH-OH 39. -OPO-OC2H5 72. -N=C-(phenyl)
7. -(C=O)-NH- 40. -OPO-OCH3 73. -C=N-(phenyl)
8. -O-NH2 41. -PO-OCH3 74. -NH-(C=O)-(phenyl)
9. -O-(C=O)-NH2 42. -PO-OC2H5 75. -N=N-(phenyl)
10. -(C=O)-NH2 43. –P-(CH3)2 76. -NH-SO2-(phenyl)
11. -O-CN 44. –P-(C2H5)2 77. -NH-(phenyl)
12. -CH=N-OH 45. -PO2O- 78. -P-(phenyl)2
13. -ONO2 46. -PO2OH 79. -C-(phenyl)2
14. -SO2-N-(CH3)2 47. -C=C-(C=O)-H 80. -CH-(phenyl)2
15. -NO2 48. -C=C-(C=O)-OH 81. -C?C-(phenyl)
16. -NO 49. -CH-(OH)-CH-(OH)- 82. -C=C-(phenyl)
17. -N-(C=O)-(CH3)2 50. -CH-OH 83. -CH-(phenyl)
18. -N-(C=O) 51. -C-OH 84. -(C=O)-(phenyl)
19. -SCN 52. -(C=O)-O- 85. -(C=O)-O-(phenyl)
20. -CN 53. -(C=O)-H 86. -SO2-(phenyl)
21. -NNN 54. -(C=O)-OH 87. -CH2-O-(phenyl)
22. -N=NN-(CH3)2 55. -(C=O)- 88. -CH(OH)-(phenyl)
23. -NN 56. -OH 89. -S-(phenyl)
24. -NH3+ 57. -(O2) 90. -CH2-(phenyl)
25. -NH-(C=S)-NH2 58. -O- 91. = =
26. -NH-(C=S)- 59. -CF3 92. =
27. -NH- 60. –CF 93. -(phenyl)-(phenyl)
28. -N- 61. -F 94. NH-cycle
29. -NH2 62. -CCl3 95. N-cycle
30. -N+- 63. -CCl 96. O-cycle
31. -SO2OH 64. -Cl 97. (C=O)-cycle
32. -SO2O- 65. -CBr3 98. S-cycle
33. -SO2-NH2 66. -CBr
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referred groups comprise common cyclic atoms (-N-, -NH-,-
O-,-S-,-(C=O)-, etc.), common non-cyclic atoms (NH2-, -NH-
, -N-, -S-, -(C=O)-, -O-, F, Cl, Br, I ,etc.), and other groups
with high occurrence frequency in the database RTECS. Ta-
ble 2 lists the groups that are used. Table 3 and Scheme 1
give the examples of similarity computation.

We conduct CoMFA analysis for one of structure patterns
screened out from the database RTECS. The representative
molecule of the structure pattern is presented in Scheme 2.
By computing molecular similarity, we get 189 chemicals
from the database RTECS whose similarity values to the rep-
resentative molecule are higher than 0.6. These chemicals
have the same framework: a six-membered ring only con-
taining one saturated hydrogen. Taking account of the ex-
perimental data of toxic effects, the chemicals mainly fall in
the five major categories according to species observed and
route of exposure. They are respectively: rat-intraperitoneal,
15 chemicals; mouse-intravenous, 19 chemicals; rabbit-in-
travenous, 37 chemicals; mouse-oral, 48 chemicals and
mouse-intraperitoneal, 102 chemicals. We select the front
three series to build CoMFA models between the structure
and LD50 values about the chemicals.

By using the software SYBYL 6.4 [21], we carry out the
following procedure to implement CoMFA analysis for each
series of chemicals: 1) generating 3D structure of molecules.
We build the structures and energy-minimise them using the
modules in the SYBYL. The charges of molecules are com-
puted by the Gasteiger-Marsili-Hückel method. 2) aligning
the molecules. We use SYBYL’s fitting capability on the at-
oms of the six-membered ring to align the molecules because
they have this common framework. 3) investigating with
CoMFA simultaneously considering flexible conformations
of the molecules. For every molecule, the common frame-
work is regarded as rigid and systematic searching of confor-
mations is partially performed on the rotatable single bonds
of side-chains. The conformations whose energies are not
more than 10 kcal mol-1 above the lowest energy are accepted
as energetically permitted. Then, the energetically permitted
conformations for each molecule are classified and selected
out about five representative conformations to be used in
CoMFA study. The final conformation of each molecule is
defined by iterative CoMFA analysis. 4) specifying the loca-
tion of the region where CoMFA fields will be evaluated.
Based on the automatically created region, the location of
the region is optimised by translation in the all space. This
translation optimisation of the region can be executed in the
software AOP [22].

Results

Screening of structure patterns of toxic chemicals

We try to screen structure patterns of toxic chemicals from
the database in the following way: Assign structure similar-
ity limit value to 0.6; select the molecule if the molecule
encounters more than 100 molecules with higher similarity
values than 0.6 to it in the database; classify the molecules
with similarity value larger than 0.6 to each other into one
class; then take the representative molecules of every class
as selected structure patterns with 0.6 as similarity limit and
100 as count limit. Totally 253 chemicals are found. Table 4
lists some structure patterns with higher chemical count than
150. To cover more of the original database, we also screen
the structure patterns given 0.6 as similarity limit, 50 as count
limit and 0.6 as similarity limit, 20 as count limit. Excluding
the previous chemicals, 100 chemicals and 337 chemicals
are screened out, respectively.

In order to analyse the structure patterns obtained, all of
them are used to form a testing database to assess the origi-
nal complete database. 17,181 out of 46,544 chemicals in
the original database are predicted to be similar to the 690
structure patterns.  This covers about 37% of the whole data-
base. It indicates that these structure patterns have the char-
acteristics to represent a cluster of toxic chemicals and pro-
vide some basis to make further QSAR analysis for toxic
chemicals.

Table 3 Similarity computation of the molecules in Scheme 1
(molecule 4 is reference molecule)

No Framework Group Similarity
indicators indicators [a] values

1 phenyl 2,2 -NH-,0,1 5/8=0.62
-N-, 1,0
-COO-,1.1
-(C=O)-,1,1
-O-,2,1
-Cl, 1,1
-C-(phenyl)2,1,1

2 phenyl 2,2 -N-,1,1 6/8=0.75
-COO-,1,1
-(C=O)-,1,1
-O-,2,2
-Cl, 1,1
-C-(phenyl)2,1,0
-CH-phenyl, 0,1

3 phenyl 2,2 -N-,1,1 6/7=0.86
-COO-,1,1
-(C=O)-,1,1
-O-,2,1
-C-(phenyl)2,1,1
-Cl, 1,1

[a] The first digit is the count index of reference molecule
and the second digit is that of required molecules.
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Table 4 The representative molecules as structure patterns (with higher chemical count than 150 and given similarity limit
as 0.6)

Chemical CAS Wisswesser Linear Notation
-count -Number

401 140-41-0 GR DMVN1&1 &GXGGVO
384 55-45-8 GR CMVO2UU2K &G &12/15
383 102585-42-2 GR BO1Y1&N2&V1N2&2 &GH
352 73972-98-2 L6TJ AX1&1&1 DOVR BG CG DG EG FVO &-NA-
323 2828-42-4 1Y1&UNOVMR
321 27585-47-3 4MVO2N2OVM4&2R BO4 CO1 &QV1VQ &QH
306 52174-08-0 1N1&V1SR BOVM1
274 94-02-0 2OV1VR
273 73623-41-3 ZR D1VO2Y1&1 &GH
252 66941-48-8 T6VMVNV FHJ FY1&S2U1 F2U1 &-NA- &29/6
246 102585-26-2 GR BG D1UN1YO2&O2
211 140-11-4 1VO1R
209 25561-56-2 T6N DNTJ ANU1VR DG& D1 &GH
203 63658-99-1 T56 BNYNJ B1 CUM D1O7 &GH
202 1508-65-2 L6TJ AXQR&VO2UU2N2&2 &GH
201 57166-13-9 L66J C1YM1&UN1 &GH
196 73664-67-2 L6TJ AN2U1&VR CO1 DO1 EO1
192 66227-09-6 3OV1OR CX1&1&1
191 2653-08-9 G1VMR DMV1G
189 115-44-6 T6VMVMV FHJ FY2&1 F2U1
188 25561-52-8 T6N DNTJ ANU1VR DOR&& D1 &GH
188 23564-06-9 2OVMYUS&MR BMYUS&MVO2
187 27591-74-8 2OPO&O2&OY1&U1VOY1&R
184 77791-43-6 T6NTJ AYVM1&2OR B1& B1 &GH
183 66827-36-9 T6N DOTJ A2OVXGR&R &GH
181 64058-98-6 GR DYO2&YUN4&M4
181 100758-54-1 L6TJ AMV3 D4
181 64058-98-6 GR DYO2&YUN4&M4
179 101651-68-7 QBQR BMV1 DBQQ
177 100310-78-9 T66 BO EOT&J C2N1&2G &GH
172 67205-34-9 NCR BG CG FG ECN DOV1
169 89-05-4 QVR BVQ DVQ EVQ
166 47003-79-2 FXFFR C1Y1&M1VM1
162 4746-61-6 Q1VMR
161 82394-11-4 T C676 IS&T&J B1N1&1 &GH
161 1159-83-7 T C676 BY IS JHJ BU3N1&1 NG &GH
160 5418-93-9 T56 BM DNJ CZ HG
159 74022-48-3 T56 BM DNJ CS3N1&1 GO1 HO1
159 21309-90-0 T56 BSNJ DO2M4 &GH
158 6550-57-8 T C676 BS INJ JN1&2N1&1 MG
155 615-16-7 T56 BNVNJ
154 61072-16-0 GR DO2NR B1&V1N2&2 &GH
152 73664-30-9 1U2MV1R CO1 DO1
151 63918-05-8 L6TJ AR DR D1O2N1&1 &GH
150 32210-23-4 L6TJ AX1&1&1 DOV1
150 991-30-0 T6N DNTJ AVR CO1 DO1 EO1& D1Y1&OVR CO1 DO1 EO1 &GH
150 32210-23-4 L6TJ AX1&1&1 DOV1
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 CoMFA analysis for one structure pattern

We carry out CoMFA studies using the QSAR module inte-
grated in the software SYBYL 6.4. The biological data are
the values of the acute medial lethal dose LD50 of chemi-
cals. They are transformed to the logarithm form log(1/LD50)
since the free energy is proportional to the logarithm of the
equilibrium constant as the equation: ÄG = - RT lnK. The
region for CoMFA is defined by performing AOP. The probe
atom is chosen to be an sp3-hybridized carbon atom with a
charge of +1. The statistical analysis is performed by the
means of the PLS (partial least-squares) technology. Leave-
one-out cross-validation is used to check the analysis and the
final PLS analysis serves as a CoMFA model, which can pro-
vide a numerical estimate of the activity as well as a qualita-

Figure 1c Contour map of final CoMFA model; for steric
effects, more bulk near green and less bulk near green is
favorable to increase the active, while for electrostatic ef-
fects, more positive near blue and more negative near red is
desirable for molecules to be more active.

Figure 1b Final CoMFA analysis with three components; r2

= 0.967, F = 109 (Rat-intraperitoneal)

Figure 1a Rat-intraperitoneal: cross-validated CoMFA
analysis with three components; q2 = 0.496

tive graphical view of the most important three-dimensional
aspects of the structure-activity relationship.

Rat-intraperitoneal The 15 chemicals subjected to the leave-
one-out cross-validated CoMFA yield a q2 value of 0.496 with
three components. And the final non-cross-validated CoMFA
model has an r2 value of 0.967 and an F value of 109. The
biological activity data of chemicals, including observed and
calculated, are listed in Table 5. And the results of the cross-
validation and the fit are displayed by the graph of calculated
activity versus observed activity in Figure 1a and b, respec-
tively. Figure 1c is the contour map of the electrostatic and
steric terms around the molecules with 80% of the signal by
default, which provides where in space the QSAR terms have
high or low values.

From Figure 1c, we can examine the 3D structure of the
molecules associated to the activity. We can discern that the
large red areas are the regions where positive potential is
favourable for decreasing the toxicity; while the large yellow
areas are the regions where bulky substituents are desirable
to decrease the activity.

Mouse-intravenous The 18 chemicals yield a q2 of 0.622with
four components for cross validation, and the result of the
final model has an r2 of 0.978 and an F of 144 (Table 6,
Figure 2).

For the molecules, the large yellow region can be intro-
duced bulky substituents to decrease the toxicity, while the
blue region is desirable to introduce negative potential.
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Rabbit-intravenous The CoMFA of 37 chemicals is per-
formed with five components: a q2 of 0.608, an r2 of 0.981
and an F of 323(Table 7, Figure 3). In Figure 3c, scattered
yellow and green areas indicate that the changes of steric
effects can help increase or decrease the activity of the mol-
ecules.

Discussion

It is essential to evaluate whether a QSAR model is valid.
The “leave-one-out” cross-validation is used in the CoMFA
and the cross-validation r2 (that is q2) from the performance

is obtained to help validate the model. For the value of q2,
1.0 corresponds to the perfect prediction while 0.0 implies
that the average accuracy of the model is the same as no
model at all. Thus, a CoMFA with a q2 of about 0.5 has al-
ready been of signification to help in decision making. In the
paper, according to the q2 values of three CoMFA models,
we can affirm the credibility of the results.  In virtue of the
models, we are able to acquire the understanding of the mo-
lecular interaction concealed in the series of molecules so as
to be used to predict the potential activity of new molecules.

However, QSAR studies should be carried out on a series
of chemicals that possibly act in a toxicologically similar
manner. Compared with pharmacophores, it is somewhat dif-
ferent to identify toxicophores because of the difficulty to

Table 5 Rat -intraperitoneal: chemicals and biological activity data including observed and calculated

No. CAS number LD50/10-3kg kg-1 log(1/LD50) log(1/LD50) log(1/LD50)
(observed) (observed) (cross-validated) (fitted)

1 125_40_6 70 1.15 0.67 1.08
2 17013_35_3 3 2.52 1.61 2.45
3 52_43_7 121 0.92 0.80 0.94
4 57_43_2 115 0.94 0.56 0.86
5 57_44_3 246 0.61 0.99 0.69
6 60784_70_5 290 0.54 0.78 0.54
7 64038_27_3 205 0.69 0.89 0.80
8 66940_75_8 755 0.12 -0.52 0.04
9 66968_29_4 227 0.64 0.81 0.79
10 66968_31_8 376 0.42 0.66 0.41
11 66968_32_9 321 0.49 0.72 0.59
12 66968_81_8 210 0.68 0.75 0.48
13 76_74_4 108 0.97 0.90 1.08
14 76_75_5 120 0.92 0.92 0.92
15 780_59_6 132 0.88 0.96 0.82

Figure 2a Mouse-intravenous. cross-validated CoMFA analy-
sis with four components; q2 = 0.622

Figure 2b final CoMFA analysis with four components; r2 =
0.978, F = 144 (Mouse-intravenous)
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determine action targets for toxic chemicals in a database.
How do we highlight different action patterns underlying these
chemicals? We fish structure patterns in the pool of toxic
chemicals by analysing molecular structure similarity. Each
chemical is compared with the other chemicals in the data-
base, then the chemicals having a large number of structur-
ally neighbours pop out. It is simple and convenient to iden-
tify the features of large classes of molecules in the database.

The method by which we compute molecular structure
similarity is just a two-dimensional (2D) similarity search-
ing, compared with a variety of similarity approaches search-
ing for a chemical database (see ref [23] for a review). But it
is not only efficient but also effective to explore a large number
of toxic chemicals. Firstly, similarity comparison will lead
to pattern belonging of molecular structure because functional
groups and the framework of a molecule determine its struc-
ture pattern. Secondly, the method compares functional group
composition based on ring system framework of chemicals
so that the integrity of molecules is taken account into with-
out introducing computation complexity. Thirdly, the method
intends to follow the notion that the shape and the chemical
composition of chemicals have to complement those of the
binding site on its receptor. The comparison of molecular
frameworks intends to meet the shape requirements while
the similarity of molecular groups provides some common-
ness of chemical composition. Thus, it may be advisable in
such a flexible way to describe molecular structure patterns
as rough skeletons of specific action.

Figure 2c Mouse-intravenous: contour map of final CoMFA
model; the implication of color representation is described
as in Figure 1c.

Table 6 Mouse-intravenous: chemicals and biological activity data including observed and calculated

No. CAS number LD50/10-3kg kg-1 log(1/LD50) log(1/LD50) log(1/LD50)
(observed) (observed) (cross-validated) (fitted)

1 125_40_6 175 0.76 0.88 0.76
2 14077_86_2 100 1.00 0.69 1.01
3 2095_57_0 103 0.99 0.86 0.87
4 2095_58_1 150 0.82 0.92 0.86
5 21149_88_2 12.5 1.90 1.68 1.89
6 39847_06_8 210 0.68 0.63 0.57
7 480_68_2 180 0.75 0.58 0.79
8 52_43_7 218 0.66 0.92 0.70
9 66968_43_2 100 1.00 1.07 0.96
10 66968_97_6 95 1.02 0.93 1.07
11 67050_36_6 41 1.39 0.78 1.25
12 67050_51_5 375 0.43 0.85 0.49
13 67050_58_2 480 0.32 0.67 0.35
14 67050_60_6 200 0.70 0.93 0.74
15 67051_27_8 12 1.92 1.58 2.00
16 76_74_4 65 1.19 1.06 1.16
17 76_75_5 70 1.16 1.01 1.18
18 83_29_4 180 0.75 0.92 0.81

NH NH

O

OO

CH2-CH=CH2C2H5(CH3)CH

Scheme 2The representative molecule of the structure pat-
tern for CoMFA analysis. (WLN: T6VMVMV FHJ F2Y&1
F2U1; CAS-number: 115-44-6)
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As we know, the substances can interact, in a large variety
of ways, with substances, tissues, and organs to cause toxic
response, so it is difficult to define a set of chemical charac-
teristics exactly that make a chemical toxic. However, in or-
der to facilitate the understanding of toxic chemicals, help-
ful information should be obtained by mining the databases
of toxicological data, which encode highly significant con-
tent. To make out the association among them and uncover
the potential features offered by them will surely expand the
effective informational content of currently available data.
Based on this vision, we make an initial attempt to exploring
the database RTECS. The scheme is a two-step strategy: dis-
crimination of toxic chemicals and QSAR analysis of struc-

ture patterns. This is a compromise between efficient and
effective: QSAR analysis to a database is effective but oner-
ous; clustering of molecules is efficient but lack of accuracy.
Our performance shows that the combination between the
two is feasible to help us explore the databases of toxicologi-
cal data.

In fact, there are many potential factors that will affect
toxic effects of a chemical. Only considering action modes,
toxic substances can be classified into several main catego-
ries: 1) substances that exhibit extremes of acidity, basicity,
dehydrating ability, or oxidising power; 2) reactive substances
that contain functional groups prone to react with
biomolecules in a damaging way; 3) heavy metals; 4) lipid-

Table 7 Rabbit-intravenous: chemicals and biological activity data including observed and calculated

No. CAS number LD50/10-3kg kg-1 log(1/LD50) log(1/LD50) log(1/LD50)
(observed) (observed) (cross-validated) (fitted)

1 143_81_7 91 1.04 1.37 1.11
2 2537_29_3 1 3.00 2.65 3.04
3 39847_06_8 80 1.10 1.19 1.12
4 52_43_7 147 0.83 1.05 0.76
5 57_43_2 49 1.31 0.99 1.23
6 66843_08_1 103 0.99 1.09 0.99
7 66941_71_7 158 0.80 0.99 0.80
8 66941_87_5 73 1.14 1.11 1.11
9 66941_88_6 46 1.34 1.37 1.38
10 66941_89_7 73 1.14 1.40 1.22
11 66968_37_4 32 1.49 1.40 1.45
12 66968_38_5 65 1.19 1.62 1.31
13 66968_42_1 44 1.36 1.26 1.34
14 66968_51_2 104 0.98 1.21 0.92
15 66968_57_8 51 1.29 1.37 1.31
16 66968_58_9 61 1.21 1.06 1.20
17 66968_59_0 61 1.21 1.13 1.24
18 66968_66_9 10 2.00 1.32 1.94
19 67050_23_1 44 1.36 1.21 1.34
20 67050_69_5 58 1.24 1.09 1.25
21 67050_71_9 78 1.11 1.10 1.13
22 67050_73_1 162 0.79 1.03 0.95
23 67050_74_2 62 1.21 1.44 1.20
24 67050_75_3 53 1.28 1.10 1.27
25 67050_77_5 69 1.16 1.27 1.14
26 67050_78_6 65 1.19 1.05 1.13
27 67050_86_6 45 1.35 1.35 1.35
28 67050_87_7 53 1.28 1.22 1.18
29 67051_03_0 45 1.35 1.11 1.37
30 67051_04_1 58 1.24 1.23 1.26
31 67051_06_3 44 1.36 1.19 1.39
32 67051_23_4 110 0.96 1.29 0.89
33 67051_27_8 5 2.30 1.61 2.23
34 67114_20_9 58 1.24 1.26 1.31
35 67114_25_4 56 1.25 1.00 1.22
36 67124_90_7 124 0.91 1.03 0.93
37 76_74_4 33 1.48 1.20 1.47
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Figure 3c Rabbit-intravenous: contour map of final CoMFA
model; the implication of color representation is described
as in Figure 1c

soluble compounds; 5) binding species in a reversible or irre-
versible way that bond to biomolecules and alter the normal
function, and so on [24]. From their general modes of mo-
lecular interaction, they mainly fall into two types: specific
and non-specific. Of the two types, specific interaction be-
tween molecules is considerably universal in biological sys-
tems and it is just our main concern in the present paper.

About the screening of structure patterns, there are sev-
eral issues that should be noted. Firstly, the definition of struc-
ture patterns is flexible and subjective, which has advantages
but also disadvantages. Secondly, molecular framework com-
parison is limited in common ring systems not more reason-
ably extended to similar ring systems. Thirdly, the exact lo-
cations of functional groups on the framework are not con-
sidered. These issues should be improved in further study.
But the current method is convenient and relatively effective
as an initial step to mine toxic chemicals.

Additionally, there still exist many other difficulties in
the procedure of driving the mining of the databases to come
into true. For example, the databases of toxicological data
are always not suitable to make an analysis. This issue re-
sults from two aspects. On one side, the quality and stand-
ards for testing and representing toxic effects vary so greatly
that the necessary reliability of data is difficult to reach. On
the other side, the structure information of chemicals is usu-
ally not paid enough emphasis to in a database. It is obvious
that the more significant the data from standardised toxicity
tests are, the more rigorous and reliable the models devel-
oped are. However, in spite of these issues, it is no doubt that
the advance in all related fields has already push us to start a
mining of the database of toxicological data.
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